On automatic boundedness of Nemytskiĭ set-valued operators
Let X, Y be two separable F-spaces. Let (Ω,Σ,μ) be a measure space with μ complete, non-atomic and σ-finite. Let be the Nemytskiĭ set-valued operator induced by a sup-measurable set-valued function . It is shown that if maps a modular space into subsets of a modular space , then is automatically modular bounded, i.e. for each set K ⊂ N(L(Ω,Σ,μ;X)) such that we have .