Measurability of linear operators in the Skorokhod topology.
This paper is concerned with lattice-group valued measures for which the sygma-additivity is defined by means of the order convergence properties. In the first section we treat the analogues for such order-measures with values in a Dedekind complete lattice-group of the Jordan, Lebesgue and Yosida-Hewitt descompositions. The second section deals with the construction of an integral for functions with respect to an order-measure, both taking their values in a Dedekind sygma-complete lattice-ring....
We prove that every modular function on a multilattice with values in a topological Abelian group generates a uniformity on which makes the multilattice operations uniformly continuous with respect to the exponential uniformity on the power set of .
Conditions, under which the elements of a locally convex vector space are the moments of a regular vector-valued measure and of a Pettis integrable function, both with values in a locally convex vector space, are investigated.