On the conditional expectation in a regular ordered space
Si Σ es una σ-álgebra y X un espacio localmente convexo se estudian las condiciones para las cuales una medida vectorial σ-aditiva γ : Σ → χ tenga una medida de control μ. Si Σ es la σ-álgebra de Borel de un espacio métrico, se obtienen condiciones necesarias y suficientes usando la τ aditividad de γ. También se dan estos resultados para las polimedidas.
A variant of Alexandrov theorem is proved stating that a compact, subadditive -poset valued mapping is continuous. Then the measure extension theorem is proved for MV-algebra valued measures.
A lattice ordered group valued subadditive measure is extended from an algebra of subsets of a set to a -algebra.
In this paper we introduce and investigate a Henstock-Kurzweil-type integral for Riesz-space-valued functions defined on (not necessarily bounded) subintervals of the extended real line. We prove some basic properties, among them the fact that our integral contains under suitable hypothesis the generalized Riemann integral and that every simple function which vanishes outside of a set of finite Lebesgue measure is integrable according to our definition, and in this case our integral coincides with...