Über ein nichtparametrisches Schätzproblem.
The extension of finitely additive measures that are invariant under a group permutations or mappings has already been widely studied. We have dealt with this problem previously from the point of view of Hahn-Banach's theorem and von Neumann's measurable groups theory. In this paper we construct countably additive measures from a close point of view, different to that of Haar's Measure Theory.
Étude des propriétés des unions et intersections d’espaces relatifs à un ensemble de mesures positives sur un groupe commutatif localement compact lorsque est invariant par translation ou stable par convolution.Dans des cas particuliers, on retrouve les propriétés d’espaces étudiés par A. Beurling et par B. Koremblium.On étudie aussi les espaces formés des fonctions appartenant localement à et qui ont un comportement à l’infini.