The action of a semigroup on a space of bounded radon measures.
Let be real homogeneous functions in of degree , let and let be the Borel measure on given by where denotes the Lebesgue measure on and . Let be the convolution operator and let Assume that, for , the following two conditions hold: vanishes only at and . In this paper we show that if then is the empty set and if then is the closed segment with endpoints and . Also, we give some examples.
Let G be a group of homeomorphisms of a nondiscrete, locally compact, σ-compact topological space X and suppose that a Haar measure on X exists: a regular Borel measure μ, positive on nonempty open sets, finite on compact sets and invariant under the homeomorphisms from G. Under some mild assumptions on G and X we prove that the measure completion of μ is the unique, up to a constant factor, nonzero, σ-finite, G-invariant measure defined on its domain iff μ is ergodic and the G-orbits of all points...
Dans ces notes il sera expliqué que la propriété est vérifiée par le groupe de Heisenberg muni de la distance de Carnot-Carathéodory et de la mesure de Lebesgue. Cette propriété correspond pour les espaces métriques mesurés à une courbure de Ricci positive. Comme application, les mesures interpolées par transport de mesure sont absolument continues. En revanche, la courbure-dimension , une autre courbure de Ricci synthétique adaptée aux espaces métriques mesurés est fausse pour .