On Ergodic Flows and the Isomorphism of Factors.
Let be a von Neumann-Kakutani - adic adding machine transformation and let . PutWe study three questions:1. When will be bounded?2. What can be said about limit points of 3. When will the skew product be ergodic on
Compact group extensions of 2-fold simple actions of locally compact second countable amenable groups are considered. It is shown what the elements of the centralizer of such a system look like. It is also proved that each factor of such a system is determined by a compact subgroup in the centralizer of a normal factor.
The author investigates non ergodic versions of several well known limit theorems for strictly stationary processes. In some cases, the assumptions which are given with respect to general invariant measure, guarantee the validity of the theorem with respect to ergodic components of the measure. In other cases, the limit theorem can fail for all ergodic components, while for the original invariant measure it holds.
Given a set X, a countable group H acting on it and a σ-finite H-invariant measure m on X, we study conditions which imply that each selector of H-orbits is nonmeasurable with respect to any H-invariant extension of m.