On a Bernoulli Property of some Piecewise C2-Diffeomorphisms in ...d.
We show that for a unitary operator U on , where X is a compact manifold of class , , and μ is a finite Borel measure on X, there exists a function that realizes the maximal spectral type of U.
We show the existence of invariant measures for Markov-Feller operators defined on completely regular topological spaces which satisfy the classical positivity condition.
Let Ti (i = 1, 2, ..., d) be commuting null preserving transformations on a finite measure space (X, F, μ) and let 1 ≤ p < ∞. In this paper we prove that for every f ∈ Lp(μ) the averagesAnf(x) = (n + 1)-d Σ0≤ni≤n f(T1n1T2n2 ... Tdnd x)converge a.e. on X if and only if there exists a finite invariant measure ν (under the transformations Ti) absolutely continuous with respect to μ and a sequence {XN} of invariant sets with XN ↑ X such that νB > 0 for all nonnull invariant sets B and...
Special flows over some locally rigid automorphisms and under L² ceiling functions satisfying a local L² Denjoy-Koksma type inequality are considered. Such flows are proved to be disjoint (in the sense of Furstenberg) from mixing flows and (under some stronger assumption) from weakly mixing flows for which the weak closure of the set of all instances consists of indecomposable Markov operators. As applications we prove that ∙ special flows built over ergodic interval exchange...
Let be a von Neumann-Kakutani - adic adding machine transformation and let . PutWe study three questions:1. When will be bounded?2. What can be said about limit points of 3. When will the skew product be ergodic on
Compact group extensions of 2-fold simple actions of locally compact second countable amenable groups are considered. It is shown what the elements of the centralizer of such a system look like. It is also proved that each factor of such a system is determined by a compact subgroup in the centralizer of a normal factor.