Majoration des semi-groupes de contractions de L1 et applications
Let be a non-integer. We consider -expansions of the form , where the digits are generated by means of a Borel map defined on . We show that has a unique mixing measure of maximal entropy with marginal measure an infinite convolution of Bernoulli measures. Furthermore, under the measure the digits form a uniform Bernoulli process. In case 1 has a finite greedy expansion with positive coefficients, the measure of maximal entropy is Markov. We also discuss the uniqueness of -expansions....
Soit un espace mesurable muni d’une transformation bijective bi-mesurable . Soit une application mesurable de dans un groupe localement compact à base dénombrable . Nous notons l’extension de , induite par , au produit . Nous donnons une description des mesures positives -invariantes et ergodiques. Nous obtenons aussi une généralisation du théorème de réduction cohomologique de O.Sarig [5] à un groupe LCD quelconque.
Every aperiodic endomorphism of a nonatomic Lebesgue space which possesses a finite 1-sided generator has a 1-sided generator such that . This is the best estimate for the minimal cardinality of a 1-sided generator. The above result is the generalization of the analogous one for ergodic case.
We prove that on a metrizable, compact, zero-dimensional space every -action with no periodic points is measurably isomorphic to a minimal -action with the same, i.e. affinely homeomorphic, simplex of measures.
An effective construction of positive-entropy almost one-to-one topological extensions of the Chacón flow is given. These extensions have the property of almost minimal power joinings. For each possible value of entropy there are uncountably many pairwise non-conjugate such extensions.