The fractal dimension of invariant subsets for piecewise monotonic maps on the interval.
In the sense of the Baire Category Theorem we show that the generic transformation T has roots of all orders (RAO theorem). The argument appears novel in that it proceeds by establishing that the set of such T is not meager - and then appeals to a Zero-One Law (Lemma 2). On the group Ω of (invertible measure-preserving) transformations, §D shows that the squaring map p: S → S^{2} is topologically complex in that both the locally-dense and locally-lacunary points of p are dense (Theorem 23). The...
Bowen’s notion of sofic entropy is a powerful invariant for classifying probability-preserving actions of sofic groups. It can be defined in terms of the covering numbers of certain metric spaces associated to such an action, the ‘model spaces’. The metric geometry of these model spaces can exhibit various interesting features, some of which provide other invariants of the action. This paper explores an approximate connectedness property of the model spaces, and uses it give a new proof that certain...
Two invertible dynamical systems (X,,μ,T) and (Y,,ν,S), where X and Y are Polish spaces and Borel probability spaces and T, S are measure preserving homeomorphisms of X and Y, are said to be finitarily orbit equivalent if there exists an invertible measure preserving mapping ϕ from a subset X₀ of X of measure one onto a subset Y₀ of Y of full measure such that (1) is continuous in the relative topology on X₀ and is continuous in the relative topology on Y₀, (2) for μ-a.e. x ∈ X. (X,,μ,T) and...
Let T be a power-bounded operator on a (real or complex) Banach space. We study the convergence of the one-sided ergodic Hilbert transform . We prove that weak and strong convergence are equivalent, and in a reflexive space also is equivalent to the convergence. We also show that (which converges on (I-T)X) is precisely the infinitesimal generator of the semigroup .