La convergence presque sûre des moyennes ergodiques suivant certaines sous-suites d'entiers
Let (Ω,A,μ,T) be a measure preserving dynamical system. The speed of convergence in probability in the ergodic theorem for a generic function on Ω is arbitrarily slow.
Dans cet article, nous établissons dans un premier temps un lemme de l'ombre dans le cas des variétés géométriquement finies à courbure négative variable. Ce théorème donne des estimées très précises de la décroissance de la mesure de Patterson des ombres, sur le bord à l'infini de telles variétés. Nous en déduisons un résultat de non divergence des horosphères. Plus précisément, nous considérons certaines moyennes naturelles sur de grandes boules horosphériques, dont nous...
We prove that simple transformations are disjoint from those which are infinitely divisible and embeddable in a flow. This is a reinforcement of a previous result of A. del Junco and M. Lemańczyk [1] who showed that simple transformations are disjoint from Gaussian processes.
We consider the ensemble of curves {γα, N: α∈(0, 1], N∈ℕ} obtained by linearly interpolating the values of the normalized theta sum N−1/2∑n=0N'−1exp(πin2α), 0≤N'<N. We prove the existence of limiting finite-dimensional distributions for such curves as N→∞, when α is distributed according to any probability measure λ, absolutely continuous w.r.t. the Lebesgue measure on [0, 1]. Our Main Theorem generalizes a result by Marklof [Duke Math. J.97 (1999) 127–153] and Jurkat and van Horne [Duke...