Échanges d'intervalles et transformations induites
We define the space of trajectories of a doubly stochastic operator on L¹(X,μ) as a shift space , where ν is a probability measure defined as in the Ionescu-Tulcea theorem and σ is the shift transformation. We study connections between the entropy of a doubly stochastic operator and the entropy of the shift on the space of trajectories of this operator.
Let f: ℙ → ℙ be a holomorphic endomorphism of a complex projective space , k ≥ 1, and let J be the Julia set of f (the topological support of the unique maximal entropy measure). Then there exists a positive number such that if ϕ: J → ℝ is a Hölder continuous function with , then ϕ admits a unique equilibrium state on J. This equilibrium state is equivalent to a fixed point of the normalized dual Perron-Frobenius operator. In addition, the dynamical system is K-mixing, whence ergodic. Proving...