Bands of invariantly extensible measures.
We consider the billiard map in the hypercube of . We obtain a language by coding the billiard map by the faces of the hypercube. We investigate the complexity function of this language. We prove that is the order of magnitude of the complexity.
We study the Borel summation method. We obtain a general sufficient condition for a given matrix to have the Borel property. We deduce as corollaries, earlier results obtained by G. M“uller and J.D. Hill. Our result is expressed in terms belonging to the theory of Gaussian processes. We show that this result cannot be extended to the study of the Borel summation method on arbitrary dynamical systems. However, in the -setting, we establish necessary conditions of the same kind by using Bourgain’s...
For every irrational rotation we construct a coboundary which is continuous except at a single point where it has a jump, is nondecreasing, and has zero derivative almost everywhere.