Page 1

Displaying 1 – 8 of 8

Showing per page

Finitely-additive, countably-additive and internal probability measures

Haosui Duanmu, William Weiss (2018)

Commentationes Mathematicae Universitatis Carolinae

We discuss two ways to construct standard probability measures, called push-down measures, from internal probability measures. We show that the Wasserstein distance between an internal probability measure and its push-down measure is infinitesimal. As an application to standard probability theory, we show that every finitely-additive Borel probability measure P on a separable metric space is a limit of a sequence of countably-additive Borel probability measures { P n } n in the sense that f d P = lim n f d P n for all bounded...

Fuzzy equality and convergences for F -observables in F -quantum spaces

Ferdinand Chovanec, František Kôpka (1991)

Applications of Mathematics

We introduce a fuzzy equality for F -observables on an F -quantum space which enables us to characterize different kinds of convergences, and to represent them by pointwise functions on an appropriate measurable space.

Fuzzy orness measure and new orness axioms

LeSheng Jin, Martin Kalina, Gang Qian (2015)

Kybernetika

We have modified the axiomatic system of orness measures, originally introduced by Kishor in 2014, keeping altogether four axioms. By proposing a fuzzy orness measure based on the inner product of lattice operations, we compare our orness measure with Yager's one which is based on the inner product of arithmetic operations. We prove that fuzzy orness measure satisfies the newly proposed four axioms and propose a method to determine OWA operator with given fuzzy orness degree.

Fuzzy-valued integrals based on a constructive methodology

Hsien-Chung Wu (2007)

Applications of Mathematics

The procedures for constructing a fuzzy number and a fuzzy-valued function from a family of closed intervals and two families of real-valued functions, respectively, are proposed in this paper. The constructive methodology follows from the form of the well-known “Resolution Identity” (decomposition theorem) in fuzzy sets theory. The fuzzy-valued measure is also proposed by introducing the notion of convergence for a sequence of fuzzy numbers. Under this setting, we develop the fuzzy-valued integral...

Currently displaying 1 – 8 of 8

Page 1