Displaying 41 – 60 of 65

Showing per page

On ( j , k ) -symmetrical functions

Piotr Liczberski, Jerzy Połubiński (1995)

Mathematica Bohemica

n the present paper the authors study some families of functions from a complex linear space X into a complex linear space Y . They introduce the notion of ( j , k ) -symmetrical function ( k = 2 , 3 , ; j = 0 , 1 , , k - 1 ) which is a generalization of the notions of even, odd and k -symmetrical functions. They generalize the well know result that each function defined on a symmetrical subset U of X can be uniquely represented as the sum of an even function and an odd function.

On maximum modulus for the derivative of a polynomial

K. Dewan, Sunil Hans (2009)

Annales UMCS, Mathematica

If P(z) is a polynomial of degree n, having all its zeros in the disk [...] then it was shown by Govil [Proc. Amer. Math. Soc. 41, no. 2 (1973), 543-546] that [...] In this paper, we obtain generalization as well as improvement of above inequality for the polynomial of the type [...] Also we generalize a result due to Dewan and Mir [Southeast Asian Bull. Math. 31 (2007), 691-695] in this direction.

On the radius of convexity for a class of conformal maps

V. Karunakaran, K. Bhuvaneswari (2007)

Colloquium Mathematicae

Let 𝓐 denote the class of all analytic functions f in the open unit disc 𝔻 in the complex plane satisfying f(0) = 0, f'(0) = 1. Let U(λ) (0 < λ ≤ 1) denote the class of functions f ∈ 𝓐 for which |(z/f(z))²f'(z) -1| < λ for z ∈ 𝔻. The behaviour of functions in this class has been extensively studied in the literature. In this paper, we shall prove that no member of U₀(λ) = {f ∈ U(λ): f''(0) = 0} is convex in 𝔻 for any λ and obtain a lower bound for the...

On the zeros of polynomials and analytic functions

Roshan Lal, Susheel Kumar, Sunil Hans (2011)

Annales UMCS, Mathematica

For a polynomial of degree n, we have obtained some results, which generalize and improve upon the earlier well known results (under certain conditions). A similar result is also obtained for analytic function.

Some Coefficient Estimates for Polynomials on the Unit Interval

Qazi, M. A., Rahman, Q. I. (2007)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 26C05, 26C10, 30A12, 30D15, 42A05, 42C05.In this paper we present some inequalities about the moduli of the coefficients of polynomials of the form f (x) : = еn = 0nan xn, where a0, ј, an О C. They can be seen as generalizations, refinements or analogues of the famous inequality of P. L. Chebyshev, according to which |an| Ј 2n-1 if | еn = 0n an xn | Ј 1 for -1 Ј x Ј 1.

Currently displaying 41 – 60 of 65