Displaying 41 – 60 of 109

Showing per page

Invertible harmonic mappings beyond the Kneser theorem and quasiconformal harmonic mappings

David Kalaj (2011)

Studia Mathematica

We extend the Rado-Choquet-Kneser theorem to mappings with Lipschitz boundary data and essentially positive Jacobian at the boundary without restriction on the convexity of image domain. The proof is based on a recent extension of the Rado-Choquet-Kneser theorem by Alessandrini and Nesi and it uses an approximation scheme. Some applications to families of quasiconformal harmonic mappings between Jordan domains are given.

La plus petite majorante surharmonique et son rapport avec l'existence des fonctions entières de type exponentiel jouant le rôle de multiplicateurs

Paul Koosis (1983)

Annales de l'institut Fourier

Étant donné une fonction w ( x ) 0 paire et continue, on se demande si une fonction entière φ ( z ) 0 de type exponentiel a existe telle que φ ( x ) exp w ( x ) soit borné pour - < x < . L’existence d’une telle φ est équivalente à celle d’une fonction croissante ρ ( t ) sur [ 0 , ) telle que ρ ( t ) = θ ( t ) , que ρ ( t ) t a π pour t , et que w ( x ) + 0 log | 1 - x 2 t 2 | d ρ ( t ) C te , x R , pourvu que w ( x ) satisfasse à une condition de régularité assez peu restrictive, décrite au début de l’article. On démontre que l’existence d’une telle ρ est à son tour équivalente à ce que la fonction 1 π - | z | | z - t | 2 w ( t ) d t - a | z | admette une majorante surharmonique...

Letter to the Editor. Remarks on Some Inequalities for Polynomials

Hachani, M. A. (2013)

Mathematica Balkanica New Series

MSC 2010: 30A10, 30C10, 30C80, 30D15, 41A17.In the present article, I point out serious errors in a paper published in Mathematica Balkanica three years ago. These errors seem to go unnoticed because some mathematicians are applying the results stated in this paper to prove other results, which should not continue.

Meilleure approximation polynomiale et croissance des fonctions entières sur certaines variétés algébriques affines

Ahmed Zeriahi (1987)

Annales de l'institut Fourier

Soit K un compact polynomialement convexe de C n et V K son “potentiel logarithmique extrémal” dans C n . Supposons que K est régulier (i.e. V K continue) et soit f une fonction holomorphe sur un voisinage de K . On construit alors une suite { P } 1 de polynôme de n variables complexes avec deg ( P ) pour 1 , telle que l’erreur d’approximation max z K | f ( z ) - P ( z ) | soit contrôlée de façon assez précise en fonction du “pseudorayon de convergence” de f par rapport à K et du degré de convergence . Ce résultat est ensuite utilisé pour étendre...

Currently displaying 41 – 60 of 109