Displaying 81 – 100 of 109

Showing per page

Some Coefficient Estimates for Polynomials on the Unit Interval

Qazi, M. A., Rahman, Q. I. (2007)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 26C05, 26C10, 30A12, 30D15, 42A05, 42C05.In this paper we present some inequalities about the moduli of the coefficients of polynomials of the form f (x) : = еn = 0nan xn, where a0, ј, an О C. They can be seen as generalizations, refinements or analogues of the famous inequality of P. L. Chebyshev, according to which |an| Ј 2n-1 if | еn = 0n an xn | Ј 1 for -1 Ј x Ј 1.

Sur les fonctions finement holomorphes

Bent Fuglede (1981)

Annales de l'institut Fourier

Ces fonctions sont définies dans des ouverts pour la topologie fine de Brelot-Cartan dans le plan complexe. Elles généralisent les fonctions holomorphes ordinaires. L’étude des fonctions finement holomorphes est fondée ici sur les fonctions Beppo Levi comme précisées par Deny. En utilisant la transformée de Cauchy-Pompeiu on retrouve et étend de façon non-probabiliste les résultats de Debiard, Gaveau et Lyons. On montre en outre que toute fonction finement holomorphe est déterminée par sa série...

The Legendre Formula in Clifford Analysis

Laville, Guy, Ramadanoff, Ivan (2009)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 30A05, 33E05, 30G30, 30G35, 33E20.Let R0,2m+1 be the Clifford algebra of the antieuclidean 2m+1 dimensional space. The elliptic Cliffordian functions may be generated by the z2m+2 function, analogous to the well-known Weierstrass z-function. The latter satisfies a Legendre equality. We prove a corresponding formula at the level of the monogenic function Dm z2m+2.

The Schwarz-Pick theorem and its applications

M. Qazi, Q. Rahman (2011)

Annales UMCS, Mathematica

Various derivative estimates for functions of exponential type in a half-plane are proved in this paper. The reader will also find a related result about functions analytic in a quadrant. In addition, the paper contains a result about functions analytic in a strip. Our main tool in this study is the Schwarz-Pick theorem from the geometric theory of functions. We also use the Phragmén-Lindelöf principle, which is of course standard in such situations.

Currently displaying 81 – 100 of 109