Displaying 101 – 120 of 125

Showing per page

The Schwarz-Pick theorem and its applications

M. Qazi, Q. Rahman (2011)

Annales UMCS, Mathematica

Various derivative estimates for functions of exponential type in a half-plane are proved in this paper. The reader will also find a related result about functions analytic in a quadrant. In addition, the paper contains a result about functions analytic in a strip. Our main tool in this study is the Schwarz-Pick theorem from the geometric theory of functions. We also use the Phragmén-Lindelöf principle, which is of course standard in such situations.

Uniform convergence of the generalized Bieberbach polynomials in regions with zero angles

F. G. Abdullayev (2001)

Czechoslovak Mathematical Journal

Let C be the extended complex plane; G C a finite Jordan with 0 G ; w = ϕ ( z ) the conformal mapping of G onto the disk B 0 ; ρ 0 : = w w < ρ 0 normalized by ϕ ( 0 ) = 0 and ϕ ' ( 0 ) = 1 . Let us set ϕ p ( z ) : = 0 z ϕ ' ( ζ ) 2 / p d ζ , and let π n , p ( z ) be the generalized Bieberbach polynomial of degree n for the pair ( G , 0 ) , which minimizes the integral G ϕ p ' ( z ) - P n ' ( z ) p d σ z in the class of all polynomials of degree not exceeding n with P n ( 0 ) = 0 , P n ' ( 0 ) = 1 . In this paper we study the uniform convergence of the generalized Bieberbach polynomials π n , p ( z ) to ϕ p ( z ) on G ¯ with interior and exterior zero angles and determine its dependence on the...

Currently displaying 101 – 120 of 125