Certain sufficient conditions for univalence.
We define certain classes of functions associated with functions of bounded variation. Some characterizations of those classes are given.
In the paper we define classes of meromorphic multivalent functions with Montel’s normalization. We investigate the coefficients estimates, distortion properties, the radius of starlikeness, subordination theorems and partial sums for the defined classes of functions. Some remarks depicting consequences of the main results are also mentioned.
For functions of the form f(z) = zp + ∑∞n=1 ap+n zp+n we obtain sharp bounds for some coefficients functionals in certain subclasses of starlike functions. Certain applications of our main results are also given. In particular, Fekete-Szegö-like inequality for classes of functions defined through extended fractional differintegrals are obtained