Quasiconformal and harmonic mappings between smooth Jordan domains.
We prove a version of the real Koebe principle for interval (or circle) maps with non-flat critical points.
For γ ∈ ℂ such that |γ| < π/2 and 0 ≤ β < 1, let denote the class of all analytic functions P in the unit disk with P(0) = 1 and in . For any fixed z₀ ∈ and λ ∈ ̅, we shall determine the region of variability for when P ranges over the class As a consequence, we present the region of variability for some subclasses of univalent functions. We also graphically illustrate the region of variability for several sets of parameters.
MSC 2010: 30C55, 30C45Distortion and growth theorems are obtained.
MSC 2010: 30C45, 30C55One of the most important questions in the study of the classes of such functions is related to bounds on the modulus of functions (growth) or modulus of the derivative (distortion). The aim of this paper is to give the growth and distortion theorems for the close-to-convex harmonic functions in the open unit disc D.
In this paper we introduce a class of increasing homeomorphic self-mappings of R. We define a harmonic extension of such functions to the upper halfplane by means of the Poisson integral. Our main results give some sufficient conditions for quasiconformality of the extension.