Characterizations of analytic functions associated with functions of bounded variation
We define certain classes of functions associated with functions of bounded variation. Some characterizations of those classes are given.
We define certain classes of functions associated with functions of bounded variation. Some characterizations of those classes are given.
In the paper we define classes of meromorphic multivalent functions with Montel’s normalization. We investigate the coefficients estimates, distortion properties, the radius of starlikeness, subordination theorems and partial sums for the defined classes of functions. Some remarks depicting consequences of the main results are also mentioned.
Let A denote the space of all analytic functions in the unit disc Δ with the normalization f(0) = f’(0) − 1 = 0. For β < 1, let . For λ > 0, suppose that denotes any one of the following classes of functions: , , . The main purpose of this paper is to find conditions on λ and γ so that each f ∈ is in or , γ ∈ [0,1/2]. Here and respectively denote the class of all starlike functions of order γ and the class of all convex functions of order γ. As a consequence, we obtain a number...
Let 𝓐 denote the class of all normalized analytic functions f (f(0) = 0 = f'(0)-1) in the open unit disc Δ. For 0 < λ ≤ 1, define 𝓤(λ) = {f ∈ 𝓐 : |(z/f(z))²f'(z) - 1| < λ, z ∈ Δ} and 𝓟(2λ) = f ∈ 𝓐 : |(z/f(z))''| < 2λ, z ∈ Δ.cr Recently, the problem of finding the starlikeness of these classes has been considered by Obradović and Ponnusamy, and later by Obradović et al. In this paper, the authors consider the problem of finding the order...