Über den Schottkyschen Satz.
Let represent the class of all normalized analytic functions f in the unit disc Δ. In the present work, we first obtain a necessary condition for convex functions in Δ. Conditions are established for a certain combination of functions to be starlike or convex in Δ. Also, using the Hadamard product as a tool, we obtain sufficient conditions for functions to be in the class of functions whose real part is positive. Moreover, we derive conditions on f and μ so that the non-linear integral transform...
Let a < 0, Ω = ℂ -(-∞, a] and U = z: |z| < 1. We consider the class of functions f which are univalent, harmonic and sense preserving with f(U) = Ω and satisfy f(0) = 0, and . We describe the closure of and determine the extreme points of .
Let a < 0 < b and Ω(a,b) = ℂ - ((-∞, a] ∪ [b,+∞)) and U= z: |z| < 1. We consider the class of functions f which are univalent, harmonic and sense-preserving with f(U) = Ω and satisfying f(0) = 0, and .