Displaying 21 – 40 of 353

Showing per page

Asymptotically conformal classes and non-Strebel points

Guowu Yao (2016)

Studia Mathematica

Let T(Δ) be the universal Teichmüller space on the unit disk Δ and T₀(Δ) be the set of asymptotically conformal classes in T(Δ). Suppose that μ is a Beltrami differential on Δ with [μ] ∈ T₀(Δ). It is an interesting question whether [tμ] belongs to T₀(Δ) for general t ≠ 0, 1. In this paper, it is shown that there exists a Beltrami differential μ ∈ [0] such that [tμ] is a non-trivial non-Strebel point for any t ( - 1 / | | μ | | , 1 / | | μ | | ) 0 , 1 .

Barbilian's metrization procedure in the plane yields either Riemannian or Lagrange generalized metrics

Wladimir G. Boskoff, Bogdan D. Suceavă (2008)

Czechoslovak Mathematical Journal

In the present paper we answer two questions raised by Barbilian in 1960. First, we study how far can the hypothesis of Barbilian's metrization procedure can be relaxed. Then, we prove that Barbilian's metrization procedure in the plane generates either Riemannian metrics or Lagrance generalized metrics not reducible to Finslerian or Langrangian metrics.

Catching sets with quasicircles.

Paul MacManus (1999)

Revista Matemática Iberoamericana

We show how certain geometric conditions on a planar set imply that the set must lie on a quasicircle, and we give a geometric characterization of all subsets of the plane that are quasiconformally equivalent to the usual Cantor middle-third set.

Currently displaying 21 – 40 of 353