Displaying 361 – 380 of 2728

Showing per page

Boundary subordination

Adam Lecko (2012)

Annales Polonici Mathematici

We study the idea of the boundary subordination of two analytic functions. Some basic properties of the boundary subordination are discussed. Applications to classes of univalent functions referring to a boundary point are demonstrated.

Bounded holomorphic functions with multiple sheeted pluripolar hulls

Armen Edigarian, Józef Siciak, Włodzimierz Zwonek (2006)

Studia Mathematica

We describe compact subsets K of ∂𝔻 and ℝ admitting holomorphic functions f with the domains of existence equal to ℂ∖K and such that the pluripolar hulls of their graphs are infinitely sheeted. The paper is motivated by a recent paper of Poletsky and Wiegerinck.

Bounds for the derivative of certain meromorphic functions and on meromorphic Bloch-type functions

Bappaditya Bhowmik, Sambhunath Sen (2024)

Czechoslovak Mathematical Journal

It is known that if f is holomorphic in the open unit disc 𝔻 of the complex plane and if, for some c > 0 , | f ( z ) | 1 / ( 1 - | z | 2 ) c , z 𝔻 , then | f ' ( z ) | 2 ( c + 1 ) / ( 1 - | z | 2 ) c + 1 . We consider a meromorphic analogue of this result. Furthermore, we introduce and study the class of meromorphic Bloch-type functions that possess a nonzero simple pole in 𝔻 . In particular, we obtain bounds for the modulus of the Taylor coefficients of functions in this class.

Bounds of the roots of the real polynomial

Imrich Komara (1987)

Aplikace matematiky

An algorithm for the calculation of a lower bound of the absolute values of the roots of a real algebraic polynomial, of an arbitrary degree, is derived. An example is given to compare the bounds calculated by the method proposed and by other methods.

Capacité analytique et le problème de Painlevé

Hervé Pajot (2003/2004)

Séminaire Bourbaki

Le problème de Painlevé consiste à trouver une caractérisation géométrique des sous-ensembles du plan complexe qui sont effaçables pour les fonctions holomorphes bornées. Ce problème d’analyse complexe a connu ces dernières années des avancées étonnantes, essentiellement grâce au dévelopement de techniques fines d’analyse réelle et de théorie de la mesure géométrique. Dans cet exposé, nous allons présenter et discuter une solution proposée par X. Tolsa en termes de courbure de Menger au problème...

Carleson measure and monogenic functions

S. Bernstein, P. Cerejeiras (2007)

Studia Mathematica

We present necessary and sufficient conditions for a measure to be a p-Carleson measure, based on the Poisson and Poisson-Szegő kernels of the n-dimensional unit ball.

Currently displaying 361 – 380 of 2728