Refinement of an inequality of E. Landau.
For γ ∈ ℂ such that |γ| < π/2 and 0 ≤ β < 1, let denote the class of all analytic functions P in the unit disk with P(0) = 1 and in . For any fixed z₀ ∈ and λ ∈ ̅, we shall determine the region of variability for when P ranges over the class As a consequence, we present the region of variability for some subclasses of univalent functions. We also graphically illustrate the region of variability for several sets of parameters.
For μ ∈ ℂ such that Re μ > 0 let denote the class of all non-vanishing analytic functions f in the unit disk with f(0) = 1 and in . For any fixed z₀ in the unit disk, a ∈ ℂ with |a| ≤ 1 and λ ∈ ̅, we shall determine the region of variability V(z₀,λ) for log f(z₀) when f ranges over the class . In the final section we graphically illustrate the region of variability for several sets of parameters.
Analysis of a non-classically damped engineering structure, which is subjected to an external excitation, leads to the solution of a system of second order ordinary differential equations. Although there exists a large variety of powerful numerical methods to accomplish this task, in some cases it is convenient to formulate the explicit inversion of the respective quadratic fundamental system. The presented contribution uses and extends concepts in matrix polynomial theory and proposes an implementation...
We point out certain flaws in two papers published in Ann. Univ. Mariae Curie-Skłodowska Sect. A, one in 2009 and the other in 2011. We discuss in detail the validity of the results in the two papers in question
The main motivation for this work comes from the century-old Painlevé problem: try to characterize geometrically removable sets for bounded analytic functions in C.