A general schlicht integral operator.
If Σ is a compact subset of a domain Ω ⊂ ℂ and the cluster values on ∂Σ of a holomorphic function f in Ω∖Σ, f' ≢ 0, are contained in a compact null-set for the holomorphic Dirichlet class, then f extends holomorphically onto the whole domain Ω.
Given a set of points in the complex plane, an incomplete polynomial is defined as the one which has these points as zeros except one of them. The classical result known as Gauss-Lucas theorem on the location of zeros of polynomials and their derivatives is extended to convex linear combinations of incomplete polynomials. An integral representation of convex linear combinations of incomplete polynomials is also given.
The main purpose of this article is to give a generalization of the logarithmic-type estimate in the Hardy-Sobolev spaces ; , and is the open unit disk or the annulus of the complex space .
We establish a connection between generalized accretive operators introduced by F. E. Browder and the theory of quasisymmetric mappings in Banach spaces pioneered by J. Väisälä. The interplay of the two fields allows for geometric proofs of continuity, differentiability, and surjectivity of generalized accretive operators.
Let f(z) and g(z) be holomorphic in the open unit disk D and let Zf and Zg be their zero sets. If Zf ⊃ Zg and |f(z)| ≥ |g(z)| (1/2 e-2 < |z| < 1), then || f || ≥ || g || where || · || is the Bergman norm: || f ||2 = π-1 ∫D |f(z)|2 dm (dm is the Lebesgue area measure).