Displaying 821 – 840 of 2730

Showing per page

Harmonic mappings in the exterior of the unit disk

Jarosław Widomski, Magdalena Gregorczyk (2010)

Annales UMCS, Mathematica

In this paper we consider a class of univalent orientation-preserving harmonic functions defined on the exterior of the unit disk which satisfy the condition [...] . We are interested in finding radius of univalence and convexity for such class and we find extremal functions. Convolution, convex combination, and explicit quasiconformal extension for this class are also determined.

Harmonic mappings onto parallel slit domains

Michael Dorff, Maria Nowak, Magdalena Wołoszkiewicz (2011)

Annales Polonici Mathematici

We consider typically real harmonic univalent functions in the unit disk 𝔻 whose range is the complex plane slit along infinite intervals on each of the lines x ± ib, b > 0. They are obtained via the shear construction of conformal mappings of 𝔻 onto the plane without two or four half-lines symmetric with respect to the real axis.

Hermitian-Toeplitz determinants and some coefficient functionals for the starlike functions

Deepak Kumar, Virendra Kumar, Laxminarayan Das (2023)

Applications of Mathematics

In this paper, we have determined the sharp lower and upper bounds on the fourth-order Hermitian-Toeplitz determinant for starlike functions with real coefficients. We also obtained the sharp bounds on the Hermitian-Toeplitz determinants of inverse and logarithmic coefficients for starlike functions with complex coefficients. Sharp bounds on the modulus of differences and difference of moduli of logarithmic and inverse coefficients are obtained. In our investigation, it has been found that the bound...

Higher order Schwarzian derivatives in interval dynamics

O. Kozlovski, D. Sands (2009)

Fundamenta Mathematicae

We introduce an infinite sequence of higher order Schwarzian derivatives closely related to the theory of monotone matrix functions. We generalize the classical Koebe lemma to maps with positive Schwarzian derivatives up to some order, obtaining control over derivatives of high order. For a large class of multimodal interval maps we show that all inverse branches of first return maps to sufficiently small neighbourhoods of critical values have their higher order Schwarzian derivatives positive up...

Hilbert-Smith Conjecture for K - Quasiconformal Groups

Gong, Jianhua (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 30C60A more general version of Hilbert's fifth problem, called the Hilbert-Smith conjecture, asserts that among all locally compact topological groups only Lie groups can act effectively on finite-dimensional manifolds. We give a solution of the Hilbert-Smith Conjecture for K - quasiconformal groups acting on domains in the extended n - dimensional Euclidean space.

Currently displaying 821 – 840 of 2730