Displaying 101 – 120 of 191

Showing per page

Coefficient inequality for transforms of parabolic starlike and uniformly convex functions

D. Vamshee Krishna, B. Venkateswarlu, T. RamReddy (2014)

Annales mathématiques Blaise Pascal

The objective of this paper is to obtain sharp upper bound to the second Hankel functional associated with the k t h root transform f ( z k ) 1 k of normalized analytic function f ( z ) belonging to parabolic starlike and uniformly convex functions, defined on the open unit disc in the complex plane, using Toeplitz determinants.

Complétude des noyaux reproduisants dans les espaces modèles

Emmanuel Fricain (2002)

Annales de l’institut Fourier

Soit ( λ n ) n 1 une suite de Blaschke du disque unité 𝔻 et Θ une fonction intérieure. On suppose que la suite de noyaux reproduisants k Θ ( z , λ n ) : = 1 - Θ ( λ n ) ¯ Θ ( z ) 1 - λ n ¯ z n 1 est complète dans l’espace modèle K Θ p : = H p Θ H 0 p ¯ , 1 < p < + . On étudie, dans un premier temps, la stabilité de cette propriété de complétude, à la fois sous l’effet de perturbations des fréquences ( λ n ) n 1 mais également sous l’effet de perturbations de la fonction Θ . On retrouve ainsi un certain nombre de résultats classiques sur les systèmes d’exponentielles. Puis, si on suppose de plus que la suite ...

Complex Analogues of the Rolle's Theorem

Sendov, Blagovest (2007)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 30C10.Classical Rolle’s theorem and its analogues for complex algebraic polynomials are discussed. A complex Rolle’s theorem is conjectured.

Complex calculus of variations

Michel Gondran, Rita Hoblos Saade (2003)

Kybernetika

In this article, we present a detailed study of the complex calculus of variations introduced in [M. Gondran: Calcul des variations complexe et solutions explicites d’équations d’Hamilton–Jacobi complexes. C.R. Acad. Sci., Paris 2001, t. 332, série I]. This calculus is analogous to the conventional calculus of variations, but is applied here to 𝐂 n functions in 𝐂 . It is based on new concepts involving the minimum and convexity of a complex function. Such an approach allows us to propose explicit solutions...

Composition operator and Sobolev-Lorentz spaces W L n , q

Stanislav Hencl, Luděk Kleprlík, Jan Malý (2014)

Studia Mathematica

Let Ω,Ω’ ⊂ ℝⁿ be domains and let f: Ω → Ω’ be a homeomorphism. We show that if the composition operator T f : u u f maps the Sobolev-Lorentz space W L n , q ( Ω ' ) to W L n , q ( Ω ) for some q ≠ n then f must be a locally bilipschitz mapping.

Composition operators on W 1 X are necessarily induced by quasiconformal mappings

Luděk Kleprlík (2014)

Open Mathematics

Let Ω ⊂ ℝn be an open set and X(Ω) be any rearrangement invariant function space close to L q(Ω), i.e. X has the q-scaling property. We prove that each homeomorphism f which induces the composition operator u ↦ u ℴ f from W 1 X to W 1 X is necessarily a q-quasiconformal mapping. We also give some new results for the sufficiency of this condition for the composition operator.

Currently displaying 101 – 120 of 191