Previous Page 2

Displaying 21 – 33 of 33

Showing per page

An improvement of Hayman's inequality on an angular domain

Cai-Feng Yi, Yu Wang, Hong-Yan Xu (2010)

Annales Polonici Mathematici

We investigate the properties of meromorphic functions on an angular domain, and obtain a form of Yang's inequality on an angular domain by reducing the coefficients of Hayman's inequality. Moreover, we also study Hayman's inequality in different forms, and obtain accurate estimates of sums of deficiencies.

Analytic solutions of a nonlinear two variables difference system whose eigenvalues are both 1

Mami Suzuki (2011)

Annales Polonici Mathematici

For nonlinear difference equations, it is difficult to obtain analytic solutions, especially when all the eigenvalues of the equation are of absolute value 1. We consider a second order nonlinear difference equation which can be transformed into the following simultaneous system of nonlinear difference equations: ⎧ x(t+1) = X(x(t),y(t)) ⎨ ⎩ y(t+1) = Y(x(t), y(t)) where X ( x , y ) = λ x + μ y + i + j 2 c i j x i y j , Y ( x , y ) = λ y + i + j 2 d i j x i y j satisfy some conditions. For these equations, we have obtained analytic solutions in the cases "|λ₁| ≠ 1 or |λ₂| ≠ 1" or "μ...

Applications of the p -adic Nevanlinna theory to functional equations

Abdelbaki Boutabaa, Alain Escassut (2000)

Annales de l'institut Fourier

Let K be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value. We apply the p -adic Nevanlinna theory to functional equations of the form g = R f , where R K ( x ) , f , g are meromorphic functions in K , or in an “open disk”, g satisfying conditions on the order of its zeros and poles. In various cases we show that f and g must be constant when they are meromorphic in all K , or they must be quotients of bounded functions when they are meromorphic in an “open disk”. In particular,...

Currently displaying 21 – 33 of 33

Previous Page 2