Previous Page 2

Displaying 21 – 40 of 40

Showing per page

Diffusion to infinity for periodic orbits in meromorphic dynamics

Janina Kotus, Grzegorz Świątek (2002)

Fundamenta Mathematicae

A small perturbation of a rational function causes only a small perturbation of its periodic orbits. We show that the situation is different for transcendental maps. Namely, orbits may escape to infinity under small perturbations of parameters. We show examples where this "diffusion to infinity" occurs and prove certain conditions under which it does not.

Distribution of zeros and shared values of difference operators

Jilong Zhang, Zongsheng Gao, Sheng Li (2011)

Annales Polonici Mathematici

We investigate the distribution of zeros and shared values of the difference operator on meromorphic functions. In particular, we show that if f is a transcendental meromorphic function of finite order with a small number of poles, c is a non-zero complex constant such that Δ c k f 0 for n ≥ 2, and a is a small function with respect to f, then f Δ c k f equals a (≠ 0,∞) at infinitely many points. Uniqueness of difference polynomials with the same 1-points or fixed points is also proved.

Dynamical behavior of two permutable entire functions

Kin-Keung Poon, Chung-Chun Yang (1998)

Annales Polonici Mathematici

We show that two permutable transcendental entire functions may have different dynamical properties, which is very different from the rational functions case.

Dynamical properties of some classes of entire functions

A. Eremenko, M. Yu Lyubich (1992)

Annales de l'institut Fourier

The paper is concerned with the dynamics of an entire transcendental function whose inverse has only finitely many singularities. It is rpoven that there are no escaping orbits on the Fatou set. Under some extra assumptions the set of escaping orbits has zero Lebesgue measure. If a function depends analytically on parameters then a periodic point as a function of parameters has only algebraic singularities. This yields the Structural Stability Theorem.

Dynamics of quadratic polynomials : complex bounds for real maps

Mikhail Lyubich, Michael Yampolsky (1997)

Annales de l'institut Fourier

We prove complex bounds for infinitely renormalizable real quadratic maps with essentially bounded combinatorics. This is the last missing ingredient in the problem of complex bounds for all infinitely renormalizable real quadratics. One of the corollaries is that the Julia set of any real quadratic map z z 2 + c , c [ - 2 , 1 / 4 ] , is locally connected.

Currently displaying 21 – 40 of 40

Previous Page 2