Page 1 Next

Displaying 1 – 20 of 34

Showing per page

Nevanlinna theory, Fuchsian functions and Brownian motion windings.

Jean-Claude Gruet (2002)

Revista Matemática Iberoamericana

Atsuji proposed some integrals along Brownian paths to study the Nevanlinna characteristic function T(f,r) when f is meromorphic in the unit disk D. We show that his criterios does not apply to the basic case when f is a modular elliptic function. The divergence of similar integrals computed along the geodesic flow is also proved. (A)

Non-landing hairs in Sierpiński curve Julia sets of transcendental entire maps

Antonio Garijo, Xavier Jarque, Mónica Moreno Rocha (2011)

Fundamenta Mathematicae

We consider the family of transcendental entire maps given by f a ( z ) = a ( z - ( 1 - a ) ) e x p ( z + a ) where a is a complex parameter. Every map has a superattracting fixed point at z = -a and an asymptotic value at z = 0. For a > 1 the Julia set of f a is known to be homeomorphic to the Sierpiński universal curve, thus containing embedded copies of any one-dimensional plane continuum. In this paper we study subcontinua of the Julia set that can be defined in a combinatorial manner. In particular, we show the existence of non-landing...

Nonlinear differential monomials sharing two values

Sujoy Majumder (2016)

Mathematica Bohemica

Using the notion of weighted sharing of values which was introduced by Lahiri (2001), we deal with the uniqueness problem for meromorphic functions when two certain types of nonlinear differential monomials namely h n h ( k ) ( h = f , ...

Nonlinear differential polynomials sharing a non-zero polynomial with finite weight

Abhijit Banerjee, Molla Basir AHAMED (2016)

Mathematica Bohemica

In the paper, dealing with a question of Lahiri (1999), we study the uniqueness of meromorphic functions in the case when two certain types of nonlinear differential polynomials, which are the derivatives of some typical linear expression, namely h n ( h - 1 ) m ( h = f , g ), share a non-zero polynomial with finite weight. The results obtained in the paper improve, extend, supplement and generalize some recent results due to Sahoo (2013), Li and Gao (2010). In particular, we have shown that under a suitable choice of...

Nonlinear differential polynomials sharing a small function

Abhijit Banerjee, Sonali Mukherjee (2008)

Archivum Mathematicum

Dealing with a question of Lahiri [6] we study the uniqueness problem of meromorphic functions concerning two nonlinear differential polynomials sharing a small function. Our results will not only improve and supplement the results of Lin-Yi [16], Lahiri Sarkar [12] but also improve and supplement a very recent result of the first author [1].

Non-recurrent meromorphic functions

Jacek Graczyk, Janina Kotus, Grzegorz Świątek (2004)

Fundamenta Mathematicae

We consider a transcendental meromorphic function f belonging to the class ℬ (with bounded set of singular values). We show that if the Julia set J(f) is the whole complex plane ℂ, and the closure of the postcritical set P(f) is contained in B(0,R) ∪ {∞} and is disjoint from the set Crit(f) of critical points, then every compact and forward invariant set is hyperbolic, provided that it is disjoint from Crit(f). It is further shown, under general additional hypotheses, that f admits no measurable...

Normal families and shared values of meromorphic functions

Mingliang Fang, Lawrence Zalcman (2003)

Annales Polonici Mathematici

Let ℱ be a family of meromorphic functions on a plane domain D, all of whose zeros are of multiplicity at least k ≥ 2. Let a, b, c, and d be complex numbers such that d ≠ b,0 and c ≠ a. If, for each f ∈ ℱ, f ( z ) = a f ( k ) ( z ) = b , and f ( k ) ( z ) = d f ( z ) = c , then ℱ is a normal family on D. The same result holds for k=1 so long as b≠(m+1)d, m=1,2,....

Normal families of bicomplex meromorphic functions

Kuldeep Singh Charak, Dominic Rochon, Narinder Sharma (2012)

Annales Polonici Mathematici

We introduce the extended bicomplex plane 𝕋̅, its geometric model: the bicomplex Riemann sphere, and the bicomplex chordal metric that enables us to talk about convergence of sequences of bicomplex meromorphic functions. Hence the concept of normality of a family of bicomplex meromorphic functions on bicomplex domains emerges. Besides obtaining a normality criterion for such families, the bicomplex analog of the Montel theorem for meromorphic functions and the fundamental normality tests for families...

Currently displaying 1 – 20 of 34

Page 1 Next