Previous Page 2

Displaying 21 – 36 of 36

Showing per page

Green functions on self-similar graphs and bounds for the spectrum of the laplacian

Bernhard Krön (2002)

Annales de l’institut Fourier

Combining the study of the simple random walk on graphs, generating functions (especially Green functions), complex dynamics and general complex analysis we introduce a new method for spectral analysis on self-similar graphs.First, for a rather general, axiomatically defined class of self-similar graphs a graph theoretic analogue to the Banach fixed point theorem is proved. The subsequent results hold for a subclass consisting of “symmetrically” self-similar graphs which however is still more general then...

Growth of (frequently) hypercyclic functions for differential operators

Hans-Peter Beise, Jürgen Müller (2011)

Studia Mathematica

We investigate the conjugate indicator diagram or, equivalently, the indicator function of (frequently) hypercyclic functions of exponential type for differential operators. This gives insights into growth conditions for these functions on particular rays or sectors. Our research extends known results in several respects.

Growth of solutions of a class of complex differential equations

Ting-Bin Cao (2009)

Annales Polonici Mathematici

The main purpose of this paper is to partly answer a question of L. Z. Yang [Israel J. Math. 147 (2005), 359-370] by proving that every entire solution f of the differential equation f ' - e P ( z ) f = 1 has infinite order and its hyperorder is a positive integer or infinity, where P is a nonconstant entire function of order less than 1/2. As an application, we obtain a uniqueness theorem for entire functions related to a conjecture of Brück [Results Math. 30 (1996), 21-24].

Currently displaying 21 – 36 of 36

Previous Page 2