On Extreme Bloch Functions with Prescribed Critical Points.
Using a result due to M. Shub, a theorem about the existence of fixed points inside the unit disc for extensions of expanding maps defined on the boundary is established. An application to a special class of rational maps on the Riemann sphere and some considerations on ergodic properties of these maps are also made.
A criterion for the existence of fixed point of one-dimensional holomorphic maps is established.
In this article, we study the uniqueness problem of meromorphic functions in m-punctured complex plane Ω and obtain that there exist two sets S1, S2 with ♯S1 = 2 and ♯S2 = 9, such that any two admissible meromorphic functions f and g in Ω must be identical if f, g share S1, S2 I M in Ω.