Integrál Cauchyův a Dirichletův problem v rovině
In 1945 the first author introduced the classes , 1 ≤ p<∞, α > -1, of holomorphic functions in the unit disk with finite integral (1) ∬ |f(ζ)|p (1-|ζ|²)α dξ dη < ∞ (ζ=ξ+iη) and established the following integral formula for : (2) f(z) = (α+1)/π ∬ f(ζ) ((1-|ζ|²)α)/((1-zζ̅)2+α) dξdη, z∈ . We have established that the analogues of the integral representation (2) hold for holomorphic functions in Ω from the classes , where: 1) , ; 2) Ω is the matrix domain consisting of those complex m...
For α ≥ 0 let denote the class of functions defined for |z| < 1 by integrating if α > 0, and log(1/(1-xz)) if α = 0, against a complex measure on |x| = 1. We study families of starlike functions where zf’(z)/f(z) ranges over a parabola with given focus and vertex. We prove a number of properties of these functions, among others that they are bounded and that they belong to . In general, it is only known that bounded starlike functions belong to for α > 0.
Let be a hyperbolic Riemann surface, a harmonic measure supported on the Martin boundary of , and the subalgebra of consisting of the boundary values of bounded analytic functions on . This paper gives a complete classification of the closed -submodules of , (weakly closed, if , when is regular and admits a sufficiently large family of bounded multiplicative analytic functions satisfying an approximation condition. It also gives, as a corollary, a corresponding result for the Hardy...
We considerably improve our earlier results [Ann. Inst. Fourier, 24-4 (1974] concerning Cauchy-Read’s theorems, convergence of Green lines, and the structure of invariant subspaces for a class of hyperbolic Riemann surfaces.