On a necessary condition for interpolation by functions in the Lipschitz class.
In this paper, we shall estimate the growth order of the n-th derivative Cauchy integrals at a point in terms of the distance between the point and the boundary of the domain. By using the estimate, we shall generalize Plemelj-Sokthoski theorem. We also consider the boundary behavior of generalized Cauchy integrals on compact bordered Riemann surfaces.
We consider a certain analog of Cauchy type integral taking values in a three-dimensional harmonic algebra with two-dimensional radical. We establish sufficient conditions for an existence of limiting values of this integral on the curve of integration.
We consider linear difference equations whose coefficients are meromorphic at . We characterize the meromorphic equivalence classes of such equations by means of a system of meromorphic invariants. Using an approach inspired by the work of G. D. Birkhoff we show that this system is free.
In this paper we completely characterize those weighted Hardy spaces that are Poletsky-Stessin Hardy spaces . We also provide a reduction of problems to problems and demonstrate how such a reduction can be used to make shortcuts in the proofs of the interpolation theorem and corona problem.