Effectiveness of transposed inverse sets in Faber regions.
We explore numerically the eigenvalues of the hermitian formwhen . We improve on the existing upper bound, and produce a (conjectural) plot of the asymptotic distribution of its eigenvalues by exploiting fairly extensive computations. The main outcome is that this asymptotic density most probably exists but is not continuous with respect to the Lebesgue measure.
On établit des estimations de l’intégrale singulière de Cauchy et des opérateurs du potentiel dans des échelles d’Ovjannikov de fonctions analytiques. Ces estimations sont utilisées pour obtenir des résultats d’existence locale en temps de solutions analytiques pour certains problèmes à frontière libre dans le plan.
We study a class of nonlinear difference equations admitting a -Gevrey formal power series solution which, in general, is not - (or Borel-) summable. Using right inverses of an associated difference operator on Banach spaces of so-called quasi-functions, we prove that this formal solution can be lifted to an analytic solution in a suitable domain of the complex plane and show that this analytic solution is an accelero-sum of the formal power series.
In this paper, we study a class of first order nonlinear degenerate partial differential equations with singularity at . Using exponential-type Nagumo norm approach, the Gevrey asymptotic analysis is extended to case of holomorphic parameters in a natural way. A sharp condition is then established to deduce the -summability of the formal solutions. Furthermore, analytical solutions in conical domains are found for each type of these nonlinear singular PDEs.