Displaying 201 – 220 of 304

Showing per page

Quadratic harmonic morphisms and O-systems

Ye-Lin Ou (1997)

Annales de l'institut Fourier

We introduce O-systems (Definition 3.1) of orthogonal transformations of m , and establish correspondences both between equivalence classes of Clifford systems and those of O-systems, and between O-systems and orthogonal multiplications of the form μ : n × m m , which allow us to solve the existence problems both for O -systems and for umbilical quadratic harmonic morphisms simultaneously. The existence problem for general quadratic harmonic morphisms is then solved by the Splitting Lemma. We also study properties...

Rarita-Schwinger type operators on spheres and real projective space

Junxia Li, John Ryan, Carmen J. Vanegas (2012)

Archivum Mathematicum

In this paper we deal with Rarita-Schwinger type operators on spheres and real projective space. First we define the spherical Rarita-Schwinger type operators and construct their fundamental solutions. Then we establish that the projection operators appearing in the spherical Rarita-Schwinger type operators and the spherical Rarita-Schwinger type equations are conformally invariant under the Cayley transformation. Further, we obtain some basic integral formulas related to the spherical Rarita-Schwinger...

Reduction of a Schwartz-type boundary value problem for biharmonic monogenic functions to Fredholm integral equations

Serhii V. Gryshchuk, Sergiy A. Plaksa (2017)

Open Mathematics

We consider a commutative algebra over the field of complex numbers with a basis e1, e2 satisfying the conditions [...] (e12+e22)2=0,e12+e22≠0. ( e 1 2 + e 2 2 ) 2 = 0 , e 1 2 + e 2 2 0 . Let D be a bounded simply-connected domain in ℝ2. We consider (1-4)-problem for monogenic -valued functions Φ(xe1 + ye2) = U1(x, y)e1 + U2(x, y)i e1 + U3(x, y)e2 + U4(x, y)i e2 having the classic derivative in the domain Dζ = xe1 + ye2 : (x, y) ∈ D: to find a monogenic in Dζ function Φ, which is continuously extended to the boundary ∂Dζ, when values of...

Resolvent conditions and powers of operators

Olavi Nevanlinna (2001)

Studia Mathematica

We discuss the relation between the growth of the resolvent near the unit circle and bounds for the powers of the operator. Resolvent conditions like those of Ritt and Kreiss are combined with growth conditions measuring the resolvent as a meromorphic function.

Currently displaying 201 – 220 of 304