Displaying 41 – 60 of 94

Showing per page

Hardy spaces for the Laplacian with lower order perturbations

Tomasz Luks (2011)

Studia Mathematica

We consider Hardy spaces of functions harmonic on smooth domains in Euclidean spaces of dimension greater than two with respect to the Laplacian perturbed by lower order terms. We deal with the gradient and Schrödinger perturbations under appropriate Kato conditions. In this context we show the usual correspondence between the harmonic Hardy spaces and the L p spaces (or the space of finite measures if p = 1) on the boundary. To this end we prove the uniform comparability of the respective harmonic...

Heat kernel of fractional Laplacian in cones

Krzysztof Bogdan, Tomasz Grzywny (2010)

Colloquium Mathematicae

We give sharp estimates for the transition density of the isotropic stable Lévy process killed when leaving a right circular cone.

Multiply superharmonic functions

Kohur Gowrisankaran (1975)

Annales de l'institut Fourier

Some results concerning the multiply superharmonic functions and the boundary behaviour are given and some problems involving these notions are described.

Non-isotropic Hausdorff capacity of exceptional sets for pluri-Green potentials in the unit ball of ℂⁿ

Kuzman Adzievski (2006)

Annales Polonici Mathematici

We study questions related to exceptional sets of pluri-Green potentials V μ in the unit ball B of ℂⁿ in terms of non-isotropic Hausdorff capacity. For suitable measures μ on the ball B, the pluri-Green potentials V μ are defined by V μ ( z ) = B l o g ( 1 / | ϕ z ( w ) | ) d μ ( w ) , where for a fixed z ∈ B, ϕ z denotes the holomorphic automorphism of B satisfying ϕ z ( 0 ) = z , ϕ z ( z ) = 0 and ( ϕ z ϕ z ) ( w ) = w for every w ∈ B. If dμ(w) = f(w)dλ(w), where f is a non-negative measurable function of B, and λ is the measure on B, invariant under all holomorphic automorphisms of B, then V μ ...

Currently displaying 41 – 60 of 94