Perturbation of a biharmonic eigenvalue problem
2000 Mathematics Subject Classification: Primary 30C10, 30C15, 31B35.A challenging conjecture of Stephen Smale on geometry of polynomials is under discussion. We consider an interpretation which turns out to be an interesting problem on equilibrium of an electrostatic field that obeys the law of the logarithmic potential. This interplay allows us to study the quantities that appear in Smale’s conjecture for polynomials whose zeros belong to certain specific regions. A conjecture concerning the electrostatic equilibrium...
We assign a measure to an upper semicontinuous function which is subharmonic with respect to the mean curvature operator, so that it agrees with the mean curvature of its graph when the function is smooth. We prove that the measure is weakly continuous with respect to almost everywhere convergence. We also establish a sharp Harnack inequality for the minimal surface equation, which is crucial for our proof of the weak continuity. As an application we prove the existence of weak solutions to the...
Let , be elliptic operators with Hölder continuous coefficients on a bounded domain of class . There is a constant depending only on the Hölder norms of the coefficients of and its constant of ellipticity such thatwhere (resp. ) are the Green functions of (resp. ) on .