Über das Dirichletsche Problem bei der Bipotentialgleichung.
Une construction de fonctions plurisousharmoniques nous permet, en utilisant les techniques de Hörmander, d’obtenir un résultat de -cohomologie à croissance. Les méthodes de B. Malgrange nous fournissent alors deux applications aux systèmes différentiels à coefficients constants.
We study unbounded harmonic functions for a second order differential operator on a homogeneous manifold of negative curvature which is a semidirect product of a nilpotent Lie group N and A = ℝ⁺. We prove that if F is harmonic and satisfies some growth condition then F has an asymptotic expansion as a → 0 with coefficients from 𝓓'(N). Then we single out a set of at most two of these coefficients which determine F. Then using asymptotic expansions we are able to prove some theorems...
Let , be elliptic operators with Hölder continuous coefficients on a bounded domain of class . There is a constant depending only on the Hölder norms of the coefficients of and its constant of ellipticity such thatwhere (resp. ) are the Green functions of (resp. ) on .
We prove universal overconvergence phenomena for harmonic functions on the real hyperbolic space.