approximations of convex, subharmonic, and plurisubharmonic functions
Page 1 Next
R. E. Greene, H. Wu (1979)
Annales scientifiques de l'École Normale Supérieure
Christer Borell (1983)
Mathematische Annalen
Noureddine Aissaoui (2001)
Revista Matemática Complutense
In this article a general result on smooth truncation of Riesz and Bessel potentials in Orlicz-Sobolev spaces is given and a capacitary type estimate is presented. We construct also a space of quasicontinuous functions and an alternative characterization of this space and a description of its dual are established. For the Riesz kernel Rm, we prove that operators of strong type (A, A), are also of capacitaries strong and weak types (m,A).
S. Kołodziej (1989)
Annales Polonici Mathematici
S. Bernstein, P. Cerejeiras (2007)
Studia Mathematica
We present necessary and sufficient conditions for a measure to be a p-Carleson measure, based on the Poisson and Poisson-Szegő kernels of the n-dimensional unit ball.
Ivana Savković (2022)
Czechoslovak Mathematical Journal
We study weighted mixed norm spaces of harmonic functions defined on smoothly bounded domains in . Our principal result is a characterization of Carleson measures for these spaces. First, we obtain an equivalence of norms on these spaces. Then we give a necessary and sufficient condition for the embedding of the weighted harmonic mixed norm space into the corresponding mixed norm space.
Adam Korányi, Stephen Vági (1972)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
D.H. Armitage, S.J. Gardiner, W. Haussmann, ... (1996)
Journal für die reine und angewandte Mathematik
Jaroslav Lukeš, Ivan Netuka, Jiří Veselý (2000)
Pokroky matematiky, fyziky a astronomie
Jaroslav Lukeš, Ivan Netuka, Jiří Veselý (2002)
Pokroky matematiky, fyziky a astronomie
Jacqueline Detraz (1981)
Bulletin de la Société Mathématique de France
Jang-Mei G. Wu (1978)
Annales de l'institut Fourier
On a Lipschitz domain in , three theorems on harmonic functions are proved. The first (boundary Harnack principle) compares two positive harmonic functions at interior points near an open subset of the boundary where both functions vanish. The second extends some familiar geometric facts about the Poisson kernel on a sphere to the Poisson kernel on . The third theorem, on non-tangential limits of quotient of two positive harmonic functions in , generalizes Doob’s relative Fatou theorem on a...
Leo Sario (1974)
Annales de l'institut Fourier
A.S. Galbraith has communicated to us the following intriguing problem: does the completeness of a manifold imply, or is it implied by, the emptiness of the class of bounded nonharmonic biharmonic functions? Among all manifolds considered thus far in biharmonic classification theory (cf. Bibliography), those that are complete fail to carry -functions, and one might suspect that this is always the case. We shall show, however, that there do exist complete manifolds of any dimension that carry...
Jean Brossard (1978)
Séminaire de probabilités de Strasbourg
Terry J. Lyons (1982)
Mathematische Annalen
Carroll, Tom, Ortega-Cerdà, Joaquim (2007)
Annales Academiae Scientiarum Fennicae. Mathematica
J. Lawrynowicz, W. Waliszewski (1971)
Mathematica Scandinavica
N. Sibony (1982/1983)
Séminaire Équations aux dérivées partielles (Polytechnique)
Manfred Rapp (1993)
Mathematische Zeitschrift
Ivan Netuka (1975)
Czechoslovak Mathematical Journal
Page 1 Next