Removable sets for Hölder continuous -harmonic functions on metric measure spaces.
This paper studies analytic aspects of so-called resistance conditions on metric measure spaces with a doubling measure. These conditions are weaker than the usually assumed Poincaré inequality, but however, they are sufficiently strong to imply several useful results in analysis on metric measure spaces. We show that under a perimeter resistance condition, the capacity of order one and the Hausdorff content of codimension one are comparable. Moreover, we have connections to the Sobolev inequality...
On relatively compact domains in metric measure spaces we construct singular functions that play the role of Green functions of the p-Laplacian. We give a characterization of metric spaces that support a global version of such singular function, in terms of capacity estimates at infinity of such metric spaces. In addition, when the measure of the space is locally Q-regular, we study quasiconformal invariance property associated with the existence of global singular functions.
We study the appropriate versions of parabolicity stochastic completeness and related Liouville properties for a general class of operators which include the p-Laplace operator, and the non linear singular operators in non-diagonal form considered by J. Serrin and collaborators.
In this note we prove that on metric measure spaces, functions of least gradient, as well as local minimizers of the area functional (after modification on a set of measure zero) are continuous everywhere outside their jump sets. As a tool, we develop some stability properties of sequences of least gradient functions. We also apply these tools to prove a maximum principle for functions of least gradient that arise as solutions to a Dirichlet problem.
We shall show that every differential operator of 2-nd order in a real separable Hilbert space can be decomposed into a regular and an irregular operator. Then we shall characterize irregular operators and differential operators satisfying the maximum principle. Results obtained for the Lévy laplacian in [3] will be generalized for irregular differential operators satisfying the maximum principle.
Let , i = 1,2,3, denote positive Borel measures on ℝⁿ, let denote the usual collection of dyadic cubes in ℝⁿ and let K: → [0,∞) be a map. We give a characterization of a trilinear embedding theorem, that is, of the inequality in terms of a discrete Wolff potential and Sawyer’s checking condition, when 1 < p₁,p₂,p₃ < ∞ and 1/p₁ + 1/p₂ + 1/p₃ ≥ 1.
The spatial gradient of solutions to non-homogeneous and degenerate parabolic equations of -Laplacean type can be pointwise estimated by natural Wolff potentials of the right hand side measure.