Previous Page 4

Displaying 61 – 75 of 75

Showing per page

Approximation et caractère de quasi-analyticité dans la théorie axiomatique des fonctions harmoniques

A. de La Pradelle (1967)

Annales de l'institut Fourier

Dans le cadre de l’axiomatique de M. Brelot, et en utilisant la théorie des fonctions harmoniques adjointes de Madame R.M. Hervé, on caractérise la propriété de quasi-analycité notée A *  : toute fonction harmonique adjointe dans un domaine est nulle dès qu’elle est nulle au voisinage d’un point. On montre que A * est équivalente à une propriété d’approximation de toute fonction réelle finie continue sur les frontières d’ouverts relativement compacts. Cette approximation est réalisée à l’aide de différences...

Approximations by regular sets and Wiener solutions in metric spaces

Anders Björn, Jana Björn (2007)

Commentationes Mathematicae Universitatis Carolinae

Let X be a complete metric space equipped with a doubling Borel measure supporting a weak Poincaré inequality. We show that open subsets of X can be approximated by regular sets. This has applications in nonlinear potential theory on metric spaces. In particular it makes it possible to define Wiener solutions of the Dirichlet problem for p -harmonic functions and to show that they coincide with three other notions of generalized solutions.

Currently displaying 61 – 75 of 75

Previous Page 4