Page 1

Displaying 1 – 12 of 12

Showing per page

La théorie des espaces fonctionnels à nullité 1 et le problème de Neumann sur les espaces harmoniques

Tosiaki Kori (1977)

Annales de l'institut Fourier

On introduit les espaces fonctionnels dans lesquels l’opérateur potentiel satisfait au principe semi-complet du maximum si et seulement si la contraction module opère. Un tel espace fonctionnel sur la frontière de Martin d’un espace harmonique symétrique de Brelot est envisagé à l’aide du noyau Θ de Naïm. Il est isomorphe à l’espace de Dirichlet des fonctions harmoniques. L’opérateur potentiel P de cet espace donne la solution du problème de Neumann. On introduit l’espace de Dirichlet des fonctions...

Logarithmic capacity is not subadditive – a fine topology approach

Pavel Pyrih (1992)

Commentationes Mathematicae Universitatis Carolinae

In Landkof’s monograph [8, p. 213] it is asserted that logarithmic capacity is strongly subadditive, and therefore that it is a Choquet capacity. An example demonstrating that logarithmic capacity is not even subadditive can be found e.gi̇n [6, Example 7.20], see also [3, p. 803]. In this paper we will show this fact with the help of the fine topology in potential theory.

Currently displaying 1 – 12 of 12

Page 1