Generalized Dirac Operators on Nonsmooth Manifolds and Maxwell's Equations.
For a locally symmetric space , we define a compactification which we call the “geodesic compactification”. It is constructed by adding limit points in to certain geodesics in . The geodesic compactification arises in other contexts. Two general constructions of Gromov for an ideal boundary of a Riemannian manifold give for locally symmetric spaces. Moreover, has a natural group theoretic construction using the Tits building. The geodesic compactification plays two fundamental roles in...
We consider a family of random walks killed at the boundary of the Weyl chamber of the dual of Sp(4), which in addition satisfies the following property: for any n ≥ 3, there is in this family a walk associated with a reflection group of order 2n. Moreover, the case n = 4 corresponds to a process which appears naturally by studying quantum random walks on the dual of Sp(4). For all the processes belonging to this family, we find the exact asymptotic of the Green functions along all infinite paths...