Satake Compactification and Extension of Holomorphic Mappings.
In this article we investigate the natural domain of definition of a holonomy map associated to a singular holomorphic foliation of the complex projective plane. We prove that germs of holonomy between algebraic curves can have large sets of singularities for the analytic continuation. In the Riccati context we provide examples with natural boundary and maximal sets of singularities. In the generic case we provide examples having at least a Cantor set of singularities and even a nonempty open set...
We first establish the equivalence between hyperconvexity of a fat bounded Reinhardt domain and the existence of a Stein neighbourhood basis of its closure. Next, we give a necessary and sufficient condition on a bounded Reinhardt domain D so that every holomorphic mapping from the punctured disk into D can be extended holomorphically to a map from Δ into D.