Displaying 41 – 60 of 322

Showing per page

Bergman-Shilov boundary for subfamilies of q-plurisubharmonic functions

Thomas Patrick Pawlaschyk (2016)

Annales Polonici Mathematici

We introduce the notion of the Shilov boundary for some subfamilies of upper semicontinuous functions on a compact Hausdorff space. It is by definition the smallest closed subset of the given space on which all functions of that subclass attain their maximum. For certain subfamilies with simple structure we show the existence and uniqueness of the Shilov boundary. We provide its relation to the set of peak points and establish Bishop-type theorems. As an application we obtain a generalization of...

Boundary behaviour of invariant distances and complex geodesics

Marco Abate (1986)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questa Nota viene studiato il comportamento al bordo delle distanze di Carathéodory e Kobayashi in domini fortemente pseudoconvessi di classe 𝐂 2 . Come applicazione si dimostra che ogni geodetica complessa in tali domini è estendibile al bordo di classe 𝐂 0 , 1 2 .

C k -estimates for the ¯ -equation on concave domains of finite type

William Alexandre (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

C k estimates for convex domains of finite type in n are known from [7] for k = 0 and from [2] for k > 0 . We want to show the same result for concave domains of finite type. As in the case of strictly pseudoconvex domain, we fit the method used in the convex case to the concave one by switching z and ζ in the integral kernel of the operator used in the convex case. However the kernel will not have the same behavior on the boundary as in the Diederich-Fischer-Fornæss-Alexandre work. To overcome this problem...

Carathéodory balls and norm balls in H p , n = z n : z p < 1

Binyamin Schwarz, Uri Srebro (1996)

Banach Center Publications

It is shown that for n ≥ 2 and p > 2, where p is not an even integer, the only balls in the Carathéodory distance on H p , n = z n : z p < 1 which are balls with respect to the complex l p norm in n are those centered at the origin.

Carathéodory balls in convex complex ellipsoids

Włodzimierz Zwonek (1996)

Annales Polonici Mathematici

We consider the structure of Carathéodory balls in convex complex ellipsoids belonging to few domains for which explicit formulas for complex geodesics are known. We prove that in most cases the only Carathéodory balls which are simultaneously ellipsoids "similar" to the considered ellipsoid (even in some wider sense) are the ones with center at 0. Nevertheless, we get a surprising result that there are ellipsoids having Carathéodory balls with center not at 0 which are also ellipsoids.

Colmatage de surfaces holomorphes et classification des surfaces compactes

Georges Dloussky (1993)

Annales de l'institut Fourier

On considère le problème du colmatage en dimension 2, où l’on examine sous quelle condition une hypersurface strictement pseudoconvexe dans une surface holomorphe est le bord d’un espace de Stein. On montre que l’exemple de Rossi d’une hypersurface strictement pseudoconvexe Σ , qui est le bord de deux domaines non relativement compacts, n’est jamais le bord d’un espace de Stein bien que les fonctions holomorphes définies dans un voisinage de Σ donnent des cartes locales. On démontre que dans une...

Currently displaying 41 – 60 of 322