Reflection principle in higher dimensions.
We prove a theorem on the boundary regularity of a purely p-dimensional complex subvariety of a relatively compact, strictly pseudoconvex domain in a Stein manifold. Some applications describing the structure of the polynomial hull of closed curves in Cn are also given.
We prove the existence of stationary discs in the ball for small almost complex deformations of the standard structure. We define a local analogue of the Riemann map and establish its main properties. These constructions are applied to study the local geometry of almost complex manifolds and their morphisms.