Page 1

Displaying 1 – 7 of 7

Showing per page

Classes de cohomologie positives dans les variétés kählériennes compactes

Olivier Debarre (2004/2005)

Séminaire Bourbaki

Étant donnée une variété kählérienne compacte X , on étudie dans l’espace vectoriel réel de cohomologie de Dolbeault H 1 , 1 ( X , 𝐑 ) H 2 ( X , 𝐑 ) le cône convexe des classes de Kähler ainsi que celui, plus grand, des classes de courants positifs fermés de type ( 1 , 1 ) . Lorsque X est projective, les traces de ces cônes sur l’espace de Néron–Severi NS ( X ) 𝐑 H 1 , 1 ( X , 𝐑 ) engendré par les classes entières sont respectivement le cône des classes de diviseurs amples et l’adhérence de celui des classes de diviseurs effectifs.

Compact Kähler manifolds with compactifiable universal cover

Benoît Claudon, Andreas Höring (2013)

Bulletin de la Société Mathématique de France

In this appendix, we observe that Iitaka’s conjecture fits in the more general context of special manifolds, in which the relevant statements follow from the particular cases of projective and simple manifolds.

Convexity on the space of Kähler metrics

Bo Berndtsson (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

These are the lecture notes of a minicourse given at a winter school in Marseille 2011. The aim of the course was to give an introduction to recent work on the geometry of the space of Kähler metrics associated to an ample line bundle. The emphasis of the course was the role of convexity, both as a motivating example and as a tool.

Currently displaying 1 – 7 of 7

Page 1