On local invariants of totally real surfaces.
The purpose of this paper is to carry over to the o-minimal settings some results about the Euler characteristic of algebraic and analytic sets. Consider a polynomially bounded o-minimal structure on the field ℝ of reals. A () smooth definable function φ: U → ℝ on an open set U in ℝⁿ determines two closed subsets W := u ∈ U: φ(u) ≤ 0, Z := u ∈ U: φ(u) = 0. We shall investigate the links of the sets W and Z at the points u ∈ U, which are well defined up to a definable homeomorphism. It is proven...