On a construction of the normal Cartan connections for CR-structures
In the present paper, we associate the techniques of the Lewy-Pinchuk reflection principle with the Behnke-Sommer continuity principle. Extending a so-called reflection function to a parameterized congruence of Segre varieties, we are led to studying the envelope of holomorphy of a certain domain covered by a smooth Levi-flat “hat”. In our main theorem, we show that every -smooth CR diffeomorphism between two globally minimal real analytic hypersurfaces in () is real analytic at every point...
This paper studies local geometry of hypersurfaces of finite multitype. Catlin’s definition of multitype is applied to a general smooth hypersurface in . We prove biholomorphic equivalence of models in dimension three and describe all biholomorphisms between such models. A finite constructive algorithm for computing multitype is described. Analogous results for decoupled hypersurfaces are given.
We survey some recent results on holomorphic or formal mappings sending real submanifolds in complex space into each other. More specifically, the approximation and convergence properties of formal CR-mappings between real-analytic CR-submanifolds will be discussed, as well as the corresponding questions in the category of real-algebraic CR-submanifolds.
The rigidity properties of the local invariants of real algebraic Cauchy-Riemann structures imposes upon holomorphic mappings some global rational properties (Poincaré 1907) or more generally algebraic ones (Webster 1977). Our principal goal will be to unify the classical or recent results in the subject, building on a study of the transcendence degree, to discuss also the usual assumption of minimality in the sense of Tumanov, in arbitrary dimension, without rank assumption and for holomorphic...
We compute the Levi form of the logarithm of the distance function for real hypersurfaces in two dimensional complex tori, and discuss the characterization of Levi flat hypersurfaces there.
We study the regularity of the induced foliation of a Levi-flat hypersurface in Cn, showing that the foliation is as many times continuously differentiable as the hypersurface itself. The key step in the proof given here is the construction of a certain family of approximate plurisubharmonic defining functions for the hypersurface in question.